z-logo
open-access-imgOpen Access
Menaquinone as the Secondary Electron Acceptor in the Type I Homodimeric Photosynthetic Reaction Center of Heliobacterium modesticaldum
Author(s) -
Torû Kondô,
Shigeru Itoh,
Masahiro Matsuoka,
Chihiro Azai,
Hirozo Ohoka
Publication year - 2015
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.5b03723
Subject(s) - chemistry , electron acceptor , electron paramagnetic resonance , photosynthetic reaction centre , photochemistry , acceptor , photosystem i , redox , fluorescence , photosystem ii , electron transfer , crystallography , photosynthesis , nuclear magnetic resonance , inorganic chemistry , physics , biochemistry , quantum mechanics , condensed matter physics
The type I photosynthetic reaction center (RC) of heliobacteria (hRC) is a homodimer containing cofactors almost analogous to those in the plant photosystem I (PS I). However, its three-dimensional structure is not yet clear. PS I uses phylloquinone (PhyQ) as a secondary electron acceptor (A1), while the available evidence has suggested that menaquinone (MQ) in hRC has no function as A1. The present study identified a new transient electron spin-polarized electron paramagnetic resonance (ESP-EPR) signal, arising from the radical pair of the oxidized electron donor and the reduced electron acceptor (P800(+)MQ(-)), in the hRC core complex and membranes from Heliobacterium modesticaldum. The ESP signal could be detected at 5-20 K upon flash excitation only after prereduction of the iron-sulfur center, F(X), and was selectively lost by extraction of MQ with diethyl ether. MQ was suggested to be located closer to F(X) than PhyQ in PS I based on the simulation of the unique A/E (A, absorption; E, emission) ESP pattern, the reduction/oxidation rates of MQ, and the power saturation property of the static MQ(-) signal. The result revealed the quinone usage as the secondary electron acceptor in hRC, as in the case of PS I.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom