z-logo
open-access-imgOpen Access
Rationalizing Sequence and Conformational Effects on the Guanine Oxidation in Different DNA Conformations
Author(s) -
Alessandro Nicola Nardi,
Alessio Olivieri,
Marco D’Abramo
Publication year - 2022
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.2c02391
Subject(s) - guanine , sequence (biology) , dna , chemistry , stereochemistry , crystallography , computational biology , biophysics , biochemistry , nucleotide , biology , gene
The effect of the environment on the guanine redox potential is studied by means of a theoretical-computational approach. Our data, in agreement with previous experimental findings, clearly show that the presence of consecutive guanine bases in both single- and double-stranded DNA oligomers lowers their reduction potential. Such an effect is even more marked when a G-rich quadruplex is considered, where the oxidized form of guanine is particularly stabilized. To the best of our knowledge, this is the first computational study reporting on a quantitative estimate of the dependence of the guanine redox potential on sequence and conformational effects in complex DNA molecules, ranging from single-stranded DNA to G-quadruplex.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom