z-logo
open-access-imgOpen Access
Predicting the Activities of Drug Excipients on Biological Targets using One-Shot Learning
Author(s) -
Xuenan Mi,
Diwakar Shukla
Publication year - 2022
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.1c10574
Subject(s) - computational biology , drug , excipient , g protein coupled receptor , computer science , drug target , drug discovery , artificial intelligence , stability (learning theory) , function (biology) , machine learning , biology , bioinformatics , pharmacology , receptor , genetics
Excipients are major components of drugs and are used to improve drug attributes such as stability and appearance. Excipients approved by the U.S. Food and Drug Administration (FDA) are regarded as safe for humans in allowed concentrations, but their potential interactions with drug targets have not been investigated systematically, which might influence a drug's efficacy. Deep learning models have been used for the identification of ligands that could bind to the drug targets. However, due to the limited available data, it is challenging to reliably estimate the likelihood of a ligand-protein interaction. One-shot learning techniques provide a potential approach to address this low data problem as these techniques require only one or a few examples to classify the new data. In this study, we apply one-shot learning models to data sets that include ligands binding to G-protein-coupled receptors (GPCRs) and kinases. The predicted results suggest that one-shot learning could be used for predicting ligand-protein interactions, and the models attain better performance when protein targets contain conserved binding pockets. The trained models are also used to predict interactions between excipients and drug targets, which provides a potential efficient strategy to explore the activities of drug excipients. We find that a large number of drug excipients could interact with biological targets and influence their function. The results demonstrate how one-shot learning can be used to make accurate predictions for excipient-protein interactions, and these methods could be used for selecting excipients with limited drug-protein interactions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom