z-logo
open-access-imgOpen Access
Fast Prediction of Binding Affinities of the SARS-CoV-2 Spike Protein Mutant N501Y (UK Variant) with ACE2 and Miniprotein Drug Candidates
Author(s) -
Alexander H. Williams,
ChangGuo Zhan
Publication year - 2021
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.1c00869
Subject(s) - affinities , covid-19 , mutant , spike (software development) , computational biology , biology , virology , genetics , computer science , medicine , gene , biochemistry , outbreak , software engineering , disease , infectious disease (medical specialty)
A recently identified variant of SARS-CoV-2 virus, known as the United Kingdom (UK) variant (lineage B.1.1.7), has an N501Y mutation on its spike protein. SARS-CoV-2 spike protein binds with angiotensin-converting enzyme 2 (ACE2), a key protein for the viral entry into the host cells. Here, we report an efficient computational approach, including the simple energy minimizations and binding free energy calculations, starting from an experimental structure of the binding complex along with experimental calibration of the calculated binding free energies, to rapidly and reliably predict the binding affinities of the N501Y mutant with human ACE2 (hACE2) and recently reported miniprotein and hACE2 decoy (CTC-445.2) drug candidates. It has been demonstrated that the N501Y mutation markedly increases the ACE2-spike protein binding affinity ( K d ) from 22 to 0.44 nM, which could partially explain why the UK variant is more infectious. The miniproteins are predicted to have ∼10,000- to 100,000-fold diminished binding affinities with the N501Y mutant, creating a need for design of novel therapeutic candidates to overcome the N501Y mutation-induced drug resistance. The N501Y mutation is also predicted to decrease the binding affinity of a hACE2 decoy (CTC-445.2) binding with the spike protein by ∼200-fold. This convenient computational approach along with experimental calibration may be similarly used in the future to predict the binding affinities of potential new variants of the spike protein.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom