z-logo
open-access-imgOpen Access
Assessing the Impact of Solvent Selection on Vibrational Sum-Frequency Scattering Spectroscopy Experiments
Author(s) -
Andrew P. Carpenter,
Evan L. Christoffersen,
Ashley N. Mapile,
Geraldine L. Richmond
Publication year - 2021
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.1c00188
Subject(s) - infrared spectroscopy , materials science , spectroscopy , solvent , absorption (acoustics) , absorption spectroscopy , phase (matter) , infrared , scattering , spectral line , chemical physics , analytical chemistry (journal) , optics , chemistry , organic chemistry , physics , composite material , quantum mechanics , astronomy
The development of vibrational sum-frequency scattering (S-VSF) spectroscopy has opened the door to directly probing nanoparticle surfaces with an interfacial and chemical specificity that was previously reserved for planar interfacial systems. Despite its potential, challenges remain in the application of S-VSF spectroscopy beyond simplified chemical systems. One such challenge includes infrared absorption by an absorptive continuous phase, which will alter the spectral lineshapes within S-VSF spectra. In this study, we investigate how solvent vibrational modes manifest in S-VSF spectra of surfactant stabilized nanoemulsions and demonstrate how corrections for infrared absorption can recover the spectral features of interfacial solvent molecules. We also investigate infrared absorption for systems with the absorptive phase dispersed in a nonabsorptive continuous phase to show that infrared absorption, while reduced, will still impact the S-VSF spectra. These studies are then used to provide practical recommendations for anyone wishing to use S-VSF to study nanoparticle surfaces where absorptive solvents are present.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom