Hotspot Coevolution Is a Key Identifier of Near-Native Protein Complexes
Author(s) -
Sambit Kumar Mishra,
Connor J. Cooper,
Jerry M. Parks,
Julie C. Mitchell
Publication year - 2021
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.0c11525
Subject(s) - coevolution , computer science , computational biology , docking (animal) , biology , protein structure , artificial intelligence , evolutionary biology , biochemistry , medicine , nursing
Protein-protein interactions play a key role in mediating numerous biological functions, with more than half the proteins in living organisms existing as either homo- or hetero-oligomeric assemblies. Protein subunits that form oligomers minimize the free energy of the complex, but exhaustive computational search-based docking methods have not comprehensively addressed the challenge of distinguishing a natively bound complex from non-native forms. Current protein docking approaches address this problem by sampling multiple binding modes in proteins and scoring each mode, with the lowest-energy (or highest scoring) binding mode being regarded as a near-native complex. However, high-scoring modes often match poorly with the true bound form, suggesting a need for improvement of the scoring function. In this study, we propose a scoring function, KFC-E, that accounts for both conservation and coevolution of putative binding hotspot residues at protein-protein interfaces. We tested KFC-E on four benchmark sets of unbound examples and two benchmark sets of bound examples, with the results demonstrating a clear improvement over scores that examine conservation and coevolution across the entire interface.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom