Anharmonic Phonon Dispersion in Polyethylene
Author(s) -
Xiuyi Qin,
So Hirata
Publication year - 2020
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.0c08493
Subject(s) - anharmonicity , phonon , quartic function , physics , dispersion (optics) , condensed matter physics , quantum mechanics , vibration , dispersion relation , function (biology) , quantum electrodynamics , mathematics , evolutionary biology , pure mathematics , biology
The second-order Green's function method for anharmonic crystals has been applied to an infinite, periodic chain of polyethylene taking into account up to quartic force constants. The frequency-independent approximation to the Dyson self-energy gives rise to numerous divergent resonances, which are fortuitous. Instead, solving the Dyson equation self-consistently with a frequency-dependent self-energy resists divergences from resonances or zero-frequency acoustic vibrations. The calculated anharmonic phonon dispersion, which nonetheless displays many true resonances, and anharmonic phonon density of states furnish hitherto unknown details that explain smaller features of observed vibrational spectra.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom