z-logo
open-access-imgOpen Access
Predicting Hydrophobicity by Learning Spatiotemporal Features of Interfacial Water Structure: Combining Molecular Dynamics Simulations with Convolutional Neural Networks
Author(s) -
Atharva Kelkar,
Bradley C. Dallin,
Reid C. Van Lehn
Publication year - 2020
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.0c05977
Subject(s) - molecular dynamics , convolutional neural network , biological system , water model , computer science , artificial neural network , set (abstract data type) , hyperparameter , work (physics) , artificial intelligence , chemical physics , chemistry , statistical physics , computational chemistry , physics , thermodynamics , biology , programming language
The hydrophobicity of functionalized interfaces can be quantified by the structure and dynamics of water molecules using molecular dynamics (MD) simulations, but existing methods to quantify interfacial hydrophobicity are computationally expensive. In this work, we develop a new machine learning approach that leverages convolutional neural networks (CNNs) to predict the hydration free energy (HFE) as a measure of interfacial hydrophobicity based on water positions sampled from MD simulations. We construct a set of idealized self-assembled monolayers (SAMs) with varying surface polarities and calculate their HFEs using indirect umbrella sampling calculations (INDUS). Using the INDUS-calculated HFEs as labels and physically informed representations of interfacial water density from MD simulations as input, we train and evaluate a series of neural networks to predict SAM HFEs. By systematically varying model hyperparameters, we demonstrate that a 3D CNN trained to analyze both spatial and temporal correlations between interfacial water molecule positions leads to HFE predictions that require an order of magnitude less MD simulation time than INDUS. We showcase the power of this model to explore a large design space by predicting HFEs for a set of 71 chemically heterogeneous SAMs with varying patterns and mole fractions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom