z-logo
open-access-imgOpen Access
Microsolvation in V+(H2O)n Clusters Studied with Selected-Ion Infrared Spectroscopy
Author(s) -
P. D. Carnegie,
Joshua H. Marks,
Antonio D. Brathwaite,
Timothy B. Ward,
Michael A. Duncan
Publication year - 2020
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.9b11275
Subject(s) - infrared spectroscopy , infrared , ion , spectroscopy , atomic physics , analytical chemistry (journal) , chemistry , materials science , physics , optics , quantum mechanics , chromatography , organic chemistry
Gas-phase ion-molecule clusters of the form V + (H 2 O) n ( n = 1-30) are produced by laser vaporization in a supersonic expansion. These ions are analyzed and mass-selected with a time-of-flight mass spectrometer and investigated with infrared laser photodissociation spectroscopy. The small clusters ( n ≤ 7) are studied with argon tagging, while the larger clusters are studied via the elimination of water molecules. The vibrational spectra for the small clusters include only free O-H stretching vibrations, while larger clusters exhibit redshifted hydrogen bonding vibrations. The spectral patterns reveal that the coordination around V + ions is completed with four water molecules. A symmetric square-planar structure forms for the n = 4 ion, and this becomes the core ion in larger structures. Clusters up to n = 8 have mostly two-dimensional structures, but hydrogen bonding networks evolve to three-dimensional structures in larger clusters. The free O-H vibration of acceptor-acceptor-donor (AAD)-coordinated surface molecules converges to a frequency near that of bulk water by the cluster size of n = 30. However, the splitting of this vibration for AAD- versus AD-coordinated molecules is still different compared to other singly charged or doubly charged cation-water clusters. This indicates that cation identity and charge-site location in the cluster can produce discernable spectral differences for clusters in this size range.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom