An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families
Author(s) -
Bradley K. Welch,
Richard Dawes,
David H. Bross,
Branko Ruščić
Publication year - 2019
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.9b04381
Subject(s) - thermochemistry , standard enthalpy of formation , chemistry , coupled cluster , cluster (spacecraft) , standard enthalpy change of formation , ion , protocol (science) , computational chemistry , molecule , enthalpy , thermodynamics , organic chemistry , physics , computer science , medicine , alternative medicine , pathology , programming language
An automated computational thermochemistry protocol based on explicitly correlated coupled-cluster theory was designed to produce highly accurate enthalpies of formation and atomization energies for small- to medium-sized molecular species (3-12 atoms). Each potential source of error was carefully examined, and the sizes of contributions to the total atomization enthalpies were used to generate uncertainty estimates. The protocol was first used to generate total atomization enthalpies for a family of four molecular species exhibiting a variety of charges, multiplicities, and electronic ground states. The new protocol was shown to be in good agreement with the Active Thermochemical Tables database for the four species: the methyl peroxy radical, methoxyoxoniumylidene (methyl peroxy cation), methyl peroxy anion, and methyl hydroperoxide. Updating the Active Thermochemical Tables to include those results yielded significantly improved accuracy for the formation enthalpies of those species. The derived protocol was then used to predict formation enthalpies for the larger ethyl peroxy family of species.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom