Autonomous Chemical Modulation and Unidirectional Coupling in Two Oscillatory Chemical Systems
Author(s) -
Gábor Holló,
István Lagzi
Publication year - 2019
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.8b11321
Subject(s) - modulation (music) , coupling (piping) , chemical communication , biological system , computer science , chemical physics , materials science , chemistry , physics , biology , acoustics , metallurgy , sex pheromone , genetics
Controlling and coupling of out-of-equilibrium reaction networks have great importance in chemistry and biology. We provide an example for the ideal master-slave coupling between two pH oscillators (the sulfite-bromate and the hydrogen peroxide-sulfite pH oscillators operated in continuous-flow stirred tank reactors). The coupling between the reactors was realized by transport of carbon dioxide through a silicon membrane, which is a common chemical species in both systems. We showed that by using this strategy, the master system can generate forced pH oscillations in the slave system. We could control the amplitude and frequency of the oscillations in the slave system and reversibly drive the transition in the oscillations between the regular and chaotic regimes. Using this coupling strategy, we could present an example of amplitude modulation in a coupled chemical system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom