z-logo
open-access-imgOpen Access
Quantum Phase Transition in the Spin-Boson Model: A Multilayer Multiconfiguration Time-Dependent Hartree Study
Author(s) -
Haobin Wang,
Jiushu Shao
Publication year - 2019
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.8b11136
Subject(s) - hartree , boson , spin (aerodynamics) , physics , quantum , quantum phase transition , phase (matter) , quantum mechanics , condensed matter physics , thermodynamics
The multilayer improved relaxation is applied to study the delocalization-localization transition in the spin-boson model at zero temperature-a well-known example of quantum phase transition. Calculations of energy eigenstates are obtained by iteratively diagonalizing the matrix of the Boltzmann operator in the top layer representation, using a Lanczos/Arnoldi method while relaxing the single particle functions of all layers using the multilayer multiconfiguration time-dependent Hartree imaginary time propagation. Two properties are used to examine the quantum phase transition: the energy splitting for the lowest pair of eigenstates and the magnetic susceptibility. Consistent findings are obtained with appropriate scaling parameters.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom