Transition from Water Wires to Bifurcated H-Bond Networks in 2-Pyridone·(H2O)n, n = 1–4 Clusters
Author(s) -
Luca Siffert,
Susan Blaser,
Philipp Ottiger,
Samuel Leutwyler
Publication year - 2018
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.8b09410
Subject(s) - bond , 2 pyridone , crystallography , materials science , chemistry , stereochemistry , business , finance
Mass-selective two-color resonant two-photon ionization (2C-R2PI), UV/UV hole-burning, and infrared (IR) depletion spectra of supersonic jet-cooled 2-pyridone·(H 2 O) n clusters with n = 1-4 have been measured to investigate the local hydration patterns around 2-pyridone (2PY) as a function of cluster size. As shown by others, the IR frequencies of the OH and NH stretches of the n = 1, 2 clusters are characteristic of water wires stretching from the NH to the C═O group of 2PY. We identify two isomers (3A and 3B) of the n = 3 cluster in the 2C-R2PI spectrum and separate them by IR/UV and UV/UV hole-burning techniques. Isomer 3A exhibits a three-membered water wire, extending the n = 1, 2 structural motif. Isomer 3B exhibits bifurcated water wires with the first H 2 O donating to two waters that form H-bonds to the C═O group. This increases the H-bond strength between the NH group of 2PY and the proximal H 2 O molecule, lowering the NH stretch to ∼2800 cm -1 . The n = 4 cluster is also bifurcated with two water wires between the bifurcating H 2 O and the C═O group. The cluster-selective IR spectra are complemented with density-functional calculations using the PW91, B3LYP, B97-D, and M06-2X functionals, where the latter two include long-range dispersive interactions, and with the ab initio correlated SCS-CC2 method. The calculated IR spectra provide firm assignments of the structures of the n = 1-4 cluster structures and allow us to understand the evolution of individual H-bond strengths with increasing cluster size.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom