z-logo
open-access-imgOpen Access
Photoannealing of Merocyanine Aggregates
Author(s) -
Felix HerrmannWestendorf,
Torsten Sachse,
Martin Schulz,
Martin Kaufmann,
Владимир Сиваков,
Rainer Beckert,
Todd J. Martı́nez,
Benjamin Dietzek,
Martin Presselt
Publication year - 2018
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.8b09048
Subject(s) - photoexcitation , supramolecular chemistry , chemical physics , photochemistry , merocyanine , ground state , dipole , acceptor , chemistry , excited state , chromophore , hydrogen bond , materials science , photochromism , crystallography , molecule , atomic physics , crystal structure , organic chemistry , physics , condensed matter physics
In this work we elucidate the fundamental difference between aggregate formation of donor-π-acceptor merocyanines in their electronic ground and excited states. While increasing the π-bridge size favors formation of π-stacked aggregates in the dark, irradiation with visible light causes reorientation of the dyes to form prototype H-aggregates with compensating dipole moments. This photoannealing changes the supramolecular structure and its UV-vis spectroscopic properties dramatically, thus being of importance for the function of active layers composed of these dyes. Aggregates of the ground state dyes are bound cooperatively through ππ-London dispersion interactions and hydrogen bonds between the polar α-cyano-carboxylic acid groups. However, charge transfer upon photoexcitation leads to repulsion of the polar acid groups. Electronic excitation of the dyes approximately doubles the ground state dipole moment, thus driving molecular reorientation into prototype H-aggregate structures. We show that this photoinduced supramolecular rearrangement can disrupt the large polymeric aggregates formed in the dark. The photoinduced supramolecular structural changes reported in this work will influence the performance of optoelectronic devices composed of these structures and must be controlled to avoid morphological decomposition of active layers upon operation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom