z-logo
open-access-imgOpen Access
Singlet Fission and Excimer Formation in Disordered Solids of Alkyl-Substituted 1,3-Diphenylisobenzofurans
Author(s) -
Paul I. Dron,
Josef Michl,
Justin C. Johnson
Publication year - 2017
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.7b07362
Subject(s) - excimer , singlet fission , substituent , singlet state , alkyl , excited state , crystallography , amorphous solid , chemistry , photochemistry , yield (engineering) , materials science , stereochemistry , fluorescence , atomic physics , physics , organic chemistry , optics , metallurgy
We describe the preparation and excited state dynamics of three alkyl derivatives of 1,3-diphenylisobenzofuran (1) in both solutions and thin films. The substitutions are intended to disrupt the slip-stacked packing observed in crystals of 1 while maintaining the favorable energies of singlet and triplet for singlet fission (SF). All substitutions result in films that are largely amorphous as judged by the absence of strong X-ray diffraction peaks. The films of 1 carrying a methyl in the para position of one phenyl ring undergo SF relatively efficiently (≥75% triplet yield, Φ T ) but more slowly than thin films of 1. When the methyl is replaced with a t-butyl, kinetic competition in the excited state favors excimer formation rather than SF (Φ T = 55%). When t-Bu groups are placed in both meta positions of the phenyl substituent, SF is slowed further and Φ T = 35%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom