Substituent Correlations Characterized by Hammett Constants in the Spiropyran–Merocyanine Transition
Author(s) -
Oliver Brügner,
Thomas Reichenbach,
Michael Sommer,
Michael Walter
Publication year - 2017
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.7b01248
Subject(s) - spiropyran , merocyanine , substituent , chemistry , hammett equation , computational chemistry , density functional theory , photochemistry , reaction rate constant , photochromism , stereochemistry , kinetics , physics , quantum mechanics
The modification of molecular properties by the use of substituents is a versatile route for molecular design. Here we show for the example of multiresponsive spiropyrans that substituent effects and their correlations can be accurately described by Hammett constants, which in turn can be obtained directly from density functional theory calculations. The internal energetic difference ΔU between the noncolored and the colored form is determined for 63 spiropyran derivatives with substituents at the spiropyran N- and C 6 -positions, and can be described by only five parameters with an accuracy better than 0.1 eV (9.75 kJ/mol) using Hammett constants. This enables the prediction of ΔU values for other substituents without the need for further calculations nor experiments.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom