Correlation Energy Extrapolation by Many-Body Expansion
Author(s) -
Jeffery S. Boschen,
Daniel Theis,
Klaus Ruedenberg,
Theresa L. Windus
Publication year - 2017
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.6b10953
Subject(s) - extrapolation , diatomic molecule , atomic orbital , electronic correlation , scaling , work (physics) , benchmark (surveying) , full configuration interaction , correlation , configuration interaction , statistical physics , energy (signal processing) , computational physics , physics , atomic physics , electron , mathematics , quantum mechanics , mathematical analysis , geometry , excited state , molecule , geodesy , geography
Accounting for electron correlation is required for high accuracy calculations of molecular energies. The full configuration interaction (CI) approach can fully capture the electron correlation within a given basis, but it does so at a computational expense that is impractical for all but the smallest chemical systems. In this work, a new methodology is presented to approximate configuration interaction calculations at a reduced computational expense and memory requirement, namely, the correlation energy extrapolation by many-body expansion (CEEMBE). This method combines a MBE approximation of the CI energy with an extrapolated correction obtained from CI calculations using subsets of the virtual orbitals. The extrapolation approach is inspired by, and analogous to, the method of correlation energy extrapolation by intrinsic scaling. Benchmark calculations of the new method are performed on diatomic fluorine and ozone. The method consistently achieves agreement with CI calculations to within a few mhartree and often achieves agreement to within ∼1 millihartree or less, while requiring significantly less computational resources.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom