Implementation of INDO/SCI with COSMO Implicit Solvation and Benchmarking for Solvatochromic Shifts
Author(s) -
Rebecca L. Gieseking,
Mark A. Ratner,
George C. Schatz
Publication year - 2016
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.6b10487
Subject(s) - solvatochromism , solvation , implicit solvation , excited state , charge (physics) , solvent , absorption (acoustics) , chemistry , conjugated system , computational chemistry , computer science , chemical physics , materials science , physics , atomic physics , quantum mechanics , polymer , organic chemistry , composite material
Accurate and rapid quantum mechanical prediction of solvatochromic shifts, particularly in systems where charge transfer plays a significant role, is important for many aspects of molecular and material design. Although the semiempirical INDO/SCI approach is computationally efficient and performs well for charge-transfer states, the availability of implicit solvent approaches has been limited. Here, we implement the COSMO solvent model with a perturbative state-specific correction to the excited-state energies with the INDO/SCI method. We show that for a series of prototypical π-conjugated molecules, our newly implemented INDO/SCI/COSMO model yields more accurate absorption energies and comparably accurate solvatochromic shifts to those computed using TD-ωB97XD and CIS with COSMO solvation at a substantially lower computational cost.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom