Quality Structures, Vibrational Frequencies, and Thermochemistry of the Products of Reaction of BrHg• with NO2, HO2, ClO, BrO, and IO
Author(s) -
Yuge Jiao,
Theodore S. Dibble
Publication year - 2015
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.5b04889
Subject(s) - thermochemistry , coupled cluster , chemistry , density functional theory , standard enthalpy of formation , atomic physics , valence (chemistry) , halogen , computational chemistry , molecule , physics , organic chemistry , alkyl
Quantum chemical calculations have been carried out to investigate the structures, vibrational frequencies, and thermochemistry of the products of BrHg(•) reactions with atmospherically abundant radicals Y(•) (Y = NO2, HO2, ClO, BrO, or IO). The coupled cluster method with single and double excitations (CCSD), combined with relativistic effective core potentials, is used to determine the equilibrium geometries and harmonic vibrational frequencies of BrHgY species. The BrHg-Y bond energies are refined using CCSD with a noniterative estimate of the triple excitations (CCSD(T)) combined with core-valence correlation consistent basis sets. We also assess the performances of various DFT methods for calculating molecular structures and vibrational frequencies of BrHgY species. We attempted to estimate spin-orbit coupling effects on bond energies computed by comparing results from standard and two-component spin-orbit density functional theory (DFT) but obtained unphysical results. The results of the present work will provide guidance for future studies of the halogen-initiated chemistry of mercury.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom