z-logo
open-access-imgOpen Access
Anion Resonances and Photoelectron Spectroscopy of the Tetracenyl Anion
Author(s) -
C. Sagan,
Étienne Garand
Publication year - 2021
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.1c05938
Subject(s) - excited state , ion , electron affinity (data page) , atomic physics , chemistry , ground state , spectroscopy , adiabatic process , x ray photoelectron spectroscopy , shape resonance , yield (engineering) , photoemission spectroscopy , conical intersection , electron , spectral line , photon energy , photon , nuclear magnetic resonance , materials science , physics , molecule , optics , organic chemistry , quantum mechanics , astronomy , thermodynamics , metallurgy
The photoelectron spectroscopy of the tetracenyl anion using slow electron velocity-map imaging (SEVI) of cryogenically cooled ions is presented. The total photodetachment yield as a function of photon energy is used to reveal a rich manifold of anion excited states above the detachment threshold. The lowest energy anionic resonance has a sufficiently long lifetime to yield a vibrationally resolved absorption spectrum that can be directly compared with theoretical predictions. Excitation of this state mostly results in electron detachment via thermionic emission. The total photodetachment yield spectrum is used to select photon wavelengths that minimize the indirect detachment signal to allow acquisition of vibrationally resolved photoelectron spectra that can inform on the neutral tetracenyl radical. Assignment of spectral features corresponding to the ground and first excited state of the neutral 12-tetracenyl isomer is made with the aid of Franck-Condon simulations. This yields adiabatic electron affinity and term energies that differ significantly from the previously reported values. Weak features corresponding to the ground state of the minor 2-teracenyl and 1-tetracenyl isomers are also identified, which allows for the experimental determination of their electron affinities for the first time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom