The Role of Zero-Point Vibration and Reactant Attraction in Exothermic Bimolecular Reactions with Submerged Potential Barriers: Theoretical Studies of the R + HBr → RH + Br (R = CH3, HO) Systems
Author(s) -
Benjámin Csorba,
Péter Szabó,
Szabolcs Góger,
György Lendvay
Publication year - 2021
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.1c05839
Subject(s) - van der waals force , exothermic reaction , chemistry , saddle point , surface hopping , zero point energy , excitation , potential energy surface , reaction dynamics , atomic physics , chemical physics , computational chemistry , molecule , physics , molecular dynamics , quantum mechanics , geometry , mathematics , organic chemistry
The dynamics of the reactions CH 3 + HBr → CH 4 + Br and HO + HBr → H 2 O + Br have been studied using the quasiclassical trajectory method to explore the interplay of the vibrational excitation of the breaking bond and the potential energy surface characterized by a prereaction van der Waals well and a submerged barrier to reaction. The attraction between the reactants is favorable for the reaction, because it brings together the reactants without any energy investment. The reaction can be thought to be controlled by capture. The trajectory calculations indeed provide excitation functions typical to capture: the reaction cross sections diverge when the collision energy is reduced toward zero. Excitation of reactant vibration accelerates both reactions. The barrier on the potential surface is so early that the coupling between the degrees of freedom at the saddle point geometry is negligible. However, the trajectory calculations show that when the breaking bond is stretched at the time of the encounter, an attractive force arises, as if the radical approached a HBr molecule whose bond is partially broken. As a result, the dynamics of the reaction are controlled more by the temporary "dynamical", vibrationally induced than by the "static" van der Waals attraction even when the reactants are in vibrational ground state. The cross sections are shown to drop to very small values when the amplitude of the breaking bond's vibration is artificially reduced, which provides an estimate of the reactivity due to the "static" attraction. Without zero-point vibration these reactions would be very slow, which is a manifestation of a unique quantum effect. Reactions where the reactivity is determined by dynamical factors such as the vibrationally enhanced attraction are found to be beyond the range of applicability of Polanyi's rules.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom