Efficient Method for an Approximate Treatment of the Coriolis Effect in Calculations of Quantum Dynamics and Spectroscopy, with Application to Scattering Resonances in Ozone
Author(s) -
Igor Gayday,
Dmitri Babikov
Publication year - 2021
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/acs.jpca.1c03350
Subject(s) - isotopomers , angular momentum , scattering , atomic physics , total angular momentum quantum number , metastability , hamiltonian (control theory) , chemistry , physics , dissociation (chemistry) , molecular physics , molecule , quantum mechanics , mathematical optimization , mathematics
A numerical approach is developed to capture the effect of rotation-vibration coupling in a practically affordable way. In this approach only a limited number of adjacent rotational components are considered to be coupled, while the couplings to other rotational components are neglected. This partially coupled (PC) approach permits to reduce the size of Hamiltonian matrix significantly, which enables the calculations of ro-vibrational states above dissociation threshold (scattering resonances) for large values of total angular momentum. This method is employed here to reveal the role of the Coriolis effect in the ozone formation reaction at room temperature, dominated by large values of total angular momentum states, on the order of J = 24 and 28. We found that, overall, the effect of ro-vibrational coupling is not minor for large J . Compared to the results of symmetric top rotor approximation, where the ro-vibrational coupling is neglected, we found that the widths of scattering resonances, responsible for the lifetimes of metastable ozone states, remain nearly the same (on average), but the number of these states increases by as much as 20%. We also found that these changes are nearly the same in symmetric and asymmetric ozone isotopomers 16 O 18 O 16 O and 16 O 16 O 18 O. Therefore, based on the results of these calculations, the Coriolis coupling does not seem to favor the formation of asymmetric ozone molecules and thus cannot be responsible for symmetry-driven mass-independent fractionation of oxygen isotopes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom