Switching from Negative-Cooperativity to No-Cooperativity in the Binding of Ion-Pair Dimers by a Bis(calix[4]pyrrole) Macrocycle
Author(s) -
Ricardo Molina-Muriel,
Gemma Aragay,
Eduardo C. EscuderoAdán,
Pablo Ballester
Publication year - 2018
Publication title -
the journal of organic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.2
H-Index - 228
eISSN - 1520-6904
pISSN - 0022-3263
DOI - 10.1021/acs.joc.8b02449
Subject(s) - chemistry , isothermal titration calorimetry , cooperativity , cooperative binding , crystallography , stereochemistry , titration , affinities , allosteric regulation , pyrrole , binding site , inorganic chemistry , receptor , organic chemistry , biochemistry
We report the synthesis of a macrocyclic receptor containing two di- meso-phenylcalix[4]pyrrole units linked by two triazole spacers. The 1,4-substitution of the 1,2,3-triazole spacers conveys different binding affinities to the two heteroditopic binding sites. These features make the receptor an ideal candidate to investigate allosteric cooperativity in the binding of ion-pair dimers. We probed the interaction of tetraalkylammonium salts (TBA·Cl, TBA·OCN, and MTOA·Cl) with the tetra-heterotopic macrocyclic receptor in chloroform solution using 1 H NMR spectroscopic titration experiments. The results obtained show that, at millimolar concentration, the addition of 2 equiv of the salt to the receptor's solution induced the quantitative pairwise binding of the ion-pairs. The 2:1 (ion-pair:receptor) complexes feature different binding geometries and binding cooperativities depending on the nature of the alkylammonium cation. The binding geometries assigned to the complexes of the ion-pair dimers in solution are fully supported by X-ray diffraction analyses of single crystals. The thermodynamic features of the binding processes (separate or concomitant formation of 1:1 and 2:1 complexes), derived from isothermal titration calorimetry (ITC) experiments, are rationalized by combining the different ion-pair binding modes of the salt dimers with the dissimilar electronic properties of the two nearby heteroditopic binding sites of the receptor.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom