z-logo
open-access-imgOpen Access
Regioselective Diversification of 2,1-Borazaronaphthalenes: Unlocking Isosteric Space via C–H Activation
Author(s) -
Geraint H. M. Davies,
Matthieu Jouffroy,
Fatemeh Sherafat,
Borna Saeednia,
Casey Howshall,
Gary A. Molander
Publication year - 2017
Publication title -
the journal of organic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.2
H-Index - 228
eISSN - 1520-6904
pISSN - 0022-3263
DOI - 10.1021/acs.joc.7b01331
Subject(s) - chemistry , regioselectivity , diversification (marketing strategy) , chemical space , stereochemistry , organic chemistry , biochemistry , drug discovery , catalysis , business , marketing
Methods for the regioselective C-H borylation and subsequent cross-coupling of the 2,1-borazaronaphthalene core are reported. Azaborines are dependent on B-N/C═C isosterism when employed in strategies for developing diverse heterocyclic scaffolds. Although 2,1-borazaronaphthalene is closely related to naphthalene in terms of structure, the argument is made that the former has electronic similarities to indole. Based on that premise, iridium-mediated C-H activation has enabled facile installation of a versatile, nucleophilic coupling handle at a previously inaccessible site of 2,1-borazaronaphthalenes. A variety of substituted 2,1-borazaronaphthalene cores can be successfully borylated and further cross-coupled in a facile manner to yield diverse C(8)-substituted 2,1-borazaronaphthalenes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom