z-logo
open-access-imgOpen Access
Visible-Light-Mediated Alkenylation, Allylation, and Cyanation of Potassium Alkyltrifluoroborates with Organic Photoredox Catalysts
Author(s) -
Drew R. Heitz,
Komal Rızwan,
Gary A. Molander
Publication year - 2016
Publication title -
the journal of organic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.2
H-Index - 228
eISSN - 1520-6904
pISSN - 0022-3263
DOI - 10.1021/acs.joc.6b01207
Subject(s) - cyanation , potassium , catalysis , chemistry , photoredox catalysis , visible spectrum , photochemistry , combinatorial chemistry , organic chemistry , photocatalysis , materials science , optoelectronics
Iridium- and ruthenium-free approaches to protected allylic amines and alkyl nitriles under photoredox conditions are reported. An inexpensive organic dye, eosin Y, catalyzes coupling of Boc-protected potassium α-aminomethyltrifluoroborates with a variety of substituted alkenyl sulfones through an α-aminomethyl radical addition-elimination pathway. Allylic and homoallylic amines were formed in moderate yields with high E/Z selectivity. The mechanistic approach was extended using tosyl cyanide as a radical trap, enabling the conversion of alkyltrifluoroborates to nitriles via a Fukuzumi acridinium-catalyzed process.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom