Exploiting Continuous Processing for Challenging Diazo Transfer and Telescoped Copper-Catalyzed Asymmetric Transformations
Author(s) -
Daniel C. Crowley,
Thomas A. Brouder,
Aoife M. Kearney,
Denis Lynch,
Alan Ford,
Stuart G. Collins,
Anita R. Maguire
Publication year - 2021
Publication title -
the journal of organic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.2
H-Index - 228
eISSN - 1520-6904
pISSN - 0022-3263
DOI - 10.1021/acs.joc.1c01310
Subject(s) - diazo , chemistry , azide , catalysis , enantioselective synthesis , oxazoline , intramolecular force , sulfonyl , combinatorial chemistry , copper , organic chemistry , photochemistry , alkyl
Generation and use of triflyl azide in flow enables efficient synthesis of a range of α-diazocarbonyl compounds, including α-diazoketones, α-diazoamides, and an α-diazosulfonyl ester, via both Regitz-type diazo transfer and deacylative/debenzoylative diazo-transfer processes with excellent yields and offers versatility in the solvent employed, in addition to addressing the hazards associated with handling of this highly reactive sulfonyl azide. Telescoping the generation of triflyl azide and diazo-transfer process with highly enantioselective copper-mediated intramolecular aromatic addition and C–H insertion processes demonstrates that the reaction stream containing the α-diazocarbonyl compound can be obtained in sufficient purity to pass directly over the immobilized copper bis(oxazoline) catalyst without detrimentally impacting the catalyst enantioselectivity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom