
The Formation of Impossible Rings in Macrocyclooligomerizations for Cyclodepsipeptide Synthesis: The 18-from-12 Paradox
Author(s) -
Abigail N. Smith,
Jeffrey N. Johnston
Publication year - 2021
Publication title -
journal of organic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.2
H-Index - 228
eISSN - 1520-6904
pISSN - 0022-3263
DOI - 10.1021/acs.joc.0c03069
Subject(s) - depsipeptide , chemistry , ring (chemistry) , isothermal titration calorimetry , monomer , stereochemistry , ring size , combinatorial chemistry , organic chemistry , polymer , biochemistry
A reinvestigation into the macrocyclooligomerization (MCO) of a tetradepsipeptide is reported, uncovering a paradox in which the MCO of depsipeptide monomers can produce "impossible" ring sizes: a 12-atom chain produced the expected 24-membered ring, alongside unexpected 18- and 30-membered cyclic oligomeric depsipeptides (CODs). We report an alternative preparation of authentic 18- and 36-membered macrocycles for this case using a stepwise synthesis that provides definitive analytical characterization for each ring size. Our investigation yields a recharacterization and reassignment of two macrocycles originally reported in this MCO series, along with updated yields and isothermal titration calorimetry data after implementation of new critical protocols for purification and subsequent analysis. Initial studies to probe this mechanistic conundrum are described.