z-logo
open-access-imgOpen Access
Phormidepistatin from the Cyanobacterium UIC 10484: Assessing the Phylogenetic Distribution of the Statine Pharmacophore
Author(s) -
Peter Sullivan,
Aleksej Krunić,
Lydia J. Davis,
Hwan Seung Kim,
Joanna E. Burdette,
Jimmy Orjala
Publication year - 2021
Publication title -
journal of natural products
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.976
H-Index - 139
eISSN - 1520-6025
pISSN - 0163-3864
DOI - 10.1021/acs.jnatprod.1c00334
Subject(s) - pharmacophore , phylogenetic tree , distribution (mathematics) , stereochemistry , biology , chemistry , biochemistry , mathematics , gene , mathematical analysis
A new linear lipopeptide, phormidepistatin ( 1 ), containing an epi-statine amino acid was isolated from cf. Phormidium sp. strain UIC 10484. The planar structure was elucidated by 1D and 2D NMR experimentation. The relative configuration was determined by J -based configurational analysis and the absolute configuration by advanced Marfey's analysis. Given that the statine moiety is an established pharmacophore known to inhibit aspartic proteases, phormidepistatin was evaluated against cathepsin D and displayed limited activity. With 1 containing a statine-like moiety, we sought to assess the distribution of this γ-amino acid within the phylum Cyanobacteria. In-depth MS/MS analysis identified the presence of phormidepistatin in cf. Phormidium sp. UIC 10045 and cf. Trichormus sp. UIC 10039. A structure database search identified 33 known cyanobacterial metabolites containing a statine or statine-like amino acid and, along with phormidepistatin, were grouped into 10 distinct compound classes. A phylogenetic tree was built comprising all cyanobacteria with established 16S rRNA sequences known to produce statine or statine-like-containing compound classes. This analysis suggests the incorporation of the γ-amino acid into secondary metabolites is taxonomically widespread within the phylum. Overall, it is our assessment that cyanobacteria are a potential source for statine or statine-like-containing compounds.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom