z-logo
open-access-imgOpen Access
Structure-Based Design of N-(5-Phenylthiazol-2-yl)acrylamides as Novel and Potent Glutathione S-Transferase Omega 1 Inhibitors
Author(s) -
Weiyang Dai,
Soma Samanta,
Ding Xue,
E.M. Petrunak,
Jeanne A. Stuckey,
Yanyan Han,
Duxin Sun,
Yong Wu,
Nouri Neamati
Publication year - 2019
Publication title -
journal of medicinal chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.01
H-Index - 261
eISSN - 1520-4804
pISSN - 0022-2623
DOI - 10.1021/acs.jmedchem.8b01960
Subject(s) - chemistry , thiazole , moiety , cocrystal , stereochemistry , structure–activity relationship , amide , glutathione , ic50 , combinatorial chemistry , lead compound , enzyme , biochemistry , molecule , hydrogen bond , in vitro , organic chemistry
Using reported glutathione S-transferase omega 1 (GSTO1-1) cocrystal structures, we designed and synthesized acrylamide-containing compounds that covalently bind to Cys32 on the catalytic site. Starting from a thiazole derivative 10 (GSTO1-1 IC 50 = 0.6 μM), compound 18 was synthesized and cocrystallized with GSTO1. Modification on the amide moiety of hit compound 10 significantly increased the GSTO1-1 inhibitory potency. We solved the cocrystal structures of new derivatives, 37 and 44, bearing an amide side chain bound to GSTO1. These new structures showed a reorientation of the phenyl thiazole core of inhibitors, 37 and 44, when compared to 18. Guided by the cocrystal structure of GSTO1:44, analogue 49 was designed, resulting in the most potent GSTO1-1 inhibitor (IC 50 = 0.22 ± 0.02 nM) known to date. We believe that our data will form the basis for future studies of developing GSTO1-1 as a new drug target for cancer therapy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here