z-logo
open-access-imgOpen Access
The Synthesized Plant Metabolite 3,4,5-Tri-O-Galloylquinic Acid Methyl Ester Inhibits Calcium Oxalate Crystal Growth in a Drosophila Model, Downregulates Renal Cell Surface Annexin A1 Expression, and Decreases Crystal Adhesion to Cells
Author(s) -
Mohamed Abd El-Salam,
Jairo Kenupp Bastos,
Jing Han,
Daniel Previdi,
Eduardo Barbosa Coelho,
Paulo Marcos Donate,
Michael F. Romero,
John C. Lieske
Publication year - 2018
Publication title -
journal of medicinal chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.01
H-Index - 261
eISSN - 1520-4804
pISSN - 0022-2623
DOI - 10.1021/acs.jmedchem.7b01566
Subject(s) - chemistry , calcium oxalate , western blot , metabolite , biochemistry , cytosol , microbiology and biotechnology , oxalate , biology , enzyme , urine , organic chemistry , gene
The plant metabolite 3,4,5-tri-O-galloylquinic acid methyl ester (TGAME, compound 6) was synthesized, and its potential effect on calcium oxalate monohydrate (COM) crystal binding to the surface of Madin-Darby canine kidney cells type I (MDCKI) and crystal growth in a Drosophila melanogaster Malpighian tubule (MT) model were investigated. Membrane, cytosolic, and total annexin A1 (AxA1), α-enolase, and heat shock protein 90 (HSP90) amounts were examined by Western blot analysis after subcellular fractionation, then confirmed by immunofluorescence staining of cultured cells. Pretreatment of MDCKI cells with TGAME for up to 6 h significantly diminished COM crystal binding in a concentration-dependent manner. TGAME significantly inhibited AxA1 surface expression by immunofluorescence microscopy, whereas intracellular AxA1 increased. Western blot analysis confirmed AxA1 expression changes in the membrane and cytosolic fractions of compound-treated cells, whereas whole cell AxA1 remained unchanged. TGAME also significantly decreased the size, number, and growth of calcium oxalate (CaOx) crystals induced in a Drosophila melanogaster MT model and possessed a potent antioxidant activity in a DPPH assay.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here