
Use of Interaction Energies in QM/MM Free Energy Simulations
Author(s) -
Phillip S. Hudson,
H. Lee Woodcock,
Stefan Boresch
Publication year - 2019
Publication title -
journal of chemical theory and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.001
H-Index - 185
eISSN - 1549-9626
pISSN - 1549-9618
DOI - 10.1021/acs.jctc.9b00084
Subject(s) - spurious relationship , perturbation theory (quantum mechanics) , energy (signal processing) , free energy perturbation , solvation , statistical physics , computer science , physics , mathematics , molecular dynamics , quantum mechanics , ion , machine learning
The use of the most accurate (i.e., QM or QM/MM) levels of theory for free energy simulations (FES) is typically not possible. Primarily, this is because the computational cost associated with the extensive configurational sampling needed for converging FES is prohibitive. To ensure the feasibility of QM-based FES, the "indirect" approach is generally taken, necessitating a free energy calculation between the MM and QM/MM potential energy surfaces. Ideally, this step is performed with standard free energy perturbation (Zwanzig's equation) as it only requires simulations be carried out at the low level of theory; however, work from several groups over the past few years has conclusively shown that Zwanzig's equation is ill-suited to this task. As such, many approximations have arisen to mitigate difficulties with Zwanzig's equation. One particularly popular notion is that the convergence of Zwanzig's equation can be improved by using interaction energy differences instead of total energy differences. Although problematic numerical fluctuations (a major problem when using Zwanzig's equation) are indeed reduced, our results and analysis demonstrate that this "interaction energy approximation" (IEA) is theoretically incorrect, and the implicit approximation invoked is spurious at best. Herein, we demonstrate this via solvation free energy calculations using IEA from two different low levels of theory to the same target high level. Results from this proof-of-concept consistently yield the wrong results, deviating by ∼1.5 kcal/mol from the rigorously obtained value.