z-logo
open-access-imgOpen Access
Time-Dependent Complete Active Space Embedded in a Polarizable Force Field
Author(s) -
Hongbin Liu,
Andrew J. Jenkins,
Andrew Wildman,
Michael J. Frisch,
Filippo Lipparini,
Benedetta Mennucci,
Xiaosong Li
Publication year - 2019
Publication title -
journal of chemical theory and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.001
H-Index - 185
eISSN - 1549-9626
pISSN - 1549-9618
DOI - 10.1021/acs.jctc.8b01152
Subject(s) - polarizability , solvatochromism , atomic orbital , excited state , complete active space , time dependent density functional theory , observable , excitation , chemical physics , wave function , chemical space , physics , computer science , chemistry , molecular physics , electron , atomic physics , quantum mechanics , molecule , drug discovery , biochemistry
Electron correlation and environmental effects play important roles in electron dynamics and spectroscopic observables of chemical systems in condensed phase. In this paper, we present a time-dependent complete active space configuration interaction (TD-CASCI) approach embedded in a polarizable force field, MMPol. The present implementation of TD-CASCI/MMPol utilizes a direct matrix-vector contraction, allowing studies of large systems. This scheme is used to study the solvatochromic shift of coumarin 153 in methanol. The TD-CASCI/MMPol approach captures the double excitation character in the excited state wave function and accurately predicts the solvatochromic red-shift of coumarin 153 dye within the experimental range, outperforming linear response time-dependent density functional theory. The effect of using different reference orbitals for the TD-CASCI/MMPol simulation is also investigated, highlighting the need for an unbiased treatment of all electronic states in the energy range of interest.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom