z-logo
open-access-imgOpen Access
Structural Correlations and Percolation in Twisted Perylene Diimides Using a Simple Anisotropic Coarse-Grained Model
Author(s) -
Alec Bowen,
Nicholas E. Jackson,
Daniel Reid,
Juan Pablo
Publication year - 2018
Publication title -
journal of chemical theory and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.001
H-Index - 185
eISSN - 1549-9626
pISSN - 1549-9618
DOI - 10.1021/acs.jctc.8b00742
Subject(s) - perylene , stacking , chemical physics , organic semiconductor , materials science , graphyne , diimide , molecular dynamics , molecule , nanotechnology , computational chemistry , physics , chemistry , graphene , optoelectronics , quantum mechanics , nuclear magnetic resonance
Large, twisted, and fused conjugated molecular architectures have begun to appear more prominently in the organic semiconductor literature. From a modeling perspective, such structures present a challenge to conventional simulation techniques; atomistic resolutions are computationally inefficient, while traditional isotropic coarse-grained models do not capture the inherent anisotropies of the molecules. In this work, we develop a simple coarse-grained model that explicitly incorporates the anisotropy of these molecular architectures, thereby providing a route toward analyzing π-stacking, and thus qualitative electronic structure, at a computationally efficient coarse-grained resolution. Our simple coarse-grained model maintains relative orientations of conjugated rings, as well as inter-ring dihedrals, that are critical for understanding electronic and excitonic transport in bulk systems. We apply this model to understand structural correlations in several recently synthesized perylene diimide (PDI)-based organic semiconductors. Twisted and nonplanar molecular architectures are found to promote amorphous morphologies while maintaining local π-stacking. A graph theoretical network analysis demonstrates that these twisted molecules are more likely to form percolating three-dimensional pathways for charge motion than strictly planar molecules, which show connectivity in only one dimension.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom