z-logo
open-access-imgOpen Access
Large-Scale Electron Correlation Calculations: Rank-Reduced Full Configuration Interaction
Author(s) -
B. Scott Fales,
Stefan Seritan,
Nick F. Settje,
Benjamin G. Levine,
Henrik Koch,
Todd J. Martı́nez
Publication year - 2018
Publication title -
journal of chemical theory and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.001
H-Index - 185
eISSN - 1549-9626
pISSN - 1549-9618
DOI - 10.1021/acs.jctc.8b00382
Subject(s) - scale (ratio) , correlation , full configuration interaction , rank (graph theory) , electron , computer science , electronic correlation , rank correlation , configuration interaction , statistical physics , physics , mathematics , atomic physics , nuclear physics , machine learning , quantum mechanics , combinatorics , geometry , excited state
We present the rank-reduced full configuration interaction (RR-FCI) method, a variational approach for the calculation of extremely large full configuration interaction (FCI) wave functions. In this report, we show that RR-FCI can provide ground state singlet and triplet energies within kcal/mol accuracy of full CI (FCI) with computational effort scaling as the square root of the number of determinants in the CI space (compared to conventional FCI methods which scale linearly with the number of determinants). Fast graphical processing unit (GPU) accelerated projected σ = Hc matrix-vector product formation enables calculations with configuration spaces as large as 30 electrons in 30 orbitals, corresponding to an FCI calculation with over 2.4 × 10 16 configurations. We apply this method in the context of complete active space configuration interaction calculations to acenes with 2-5 aromatic rings, comparing absolute energies against FCI when possible and singlet/triplet excitation energies against both density matrix renormalization group (DMRG) and experimental results. The dissociation of molecular nitrogen was also examined using both FCI and RR-FCI. In each case, we found that RR-FCI provides a low cost alternative to FCI, with particular advantages when relative energies are desired.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom