z-logo
open-access-imgOpen Access
A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All spd-Block Elements (Z = 1–86)
Author(s) -
Stefan Grimme,
Christoph Bannwarth,
Philip Shushkov
Publication year - 2017
Publication title -
journal of chemical theory and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.001
H-Index - 185
eISSN - 1549-9626
pISSN - 1549-9618
DOI - 10.1021/acs.jctc.7b00118
Subject(s) - non covalent interactions , density functional theory , tight binding , hamiltonian (control theory) , atomic orbital , wave function , chemistry , statistical physics , computational chemistry , molecular physics , chemical physics , physics , quantum mechanics , electronic structure , hydrogen bond , molecule , mathematics , mathematical optimization , electron
We propose a novel, special purpose semiempirical tight binding (TB) method for the calculation of structures, vibrational frequencies, and noncovalent interactions of large molecular systems with 1000 or more atoms. The functional form of the method is related to the self-consistent density functional TB scheme and mostly avoids element-pair-specific parameters. The parametrization covers all spd-block elements and the lanthanides up to Z = 86 using reference data at the hybrid density functional theory level. Key features of the Hamiltonian are the use of partially polarized Gaussian-type orbitals, a double-ζ orbital basis for hydrogen, atomic-shell charges, diagonal third-order charge fluctuations, coordination number-dependent energy levels, a noncovalent halogen-bond potential, and the well-established D3 dispersion correction. The accuracy of the method, called Geometry, Frequency, Noncovalent, eXtended TB (GFN-xTB), is extensively benchmarked for various systems in comparison with existing semiempirical approaches, and the method is applied to a few representative structural problems in chemistry.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom