Photoinduced Charge Transfer versus Fragmentation Pathways in Lanthanum Cyclopentadienyl Complexes
Author(s) -
Yulun Han,
Qingguo Meng,
Bakhtiyor Rasulev,
P. Stanley May,
Mary T. Berry,
Dmitri S. Kilin
Publication year - 2017
Publication title -
journal of chemical theory and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.001
H-Index - 185
eISSN - 1549-9626
pISSN - 1549-9618
DOI - 10.1021/acs.jctc.7b00050
Subject(s) - photoionization , surface hopping , fragmentation (computing) , excited state , spectral line , phonon , chemical physics , atomic physics , mass spectrum , molecular physics , ionization , chemistry , materials science , physics , ion , condensed matter physics , quantum mechanics , organic chemistry , computer science , operating system
This study compares two competing pathways of photoexcitations in gas-phase metal-organic complexes: first, a sequence of phonon-assisted electronic transitions leading to dissipation of the energy of photoexcitations and, second, a sequence of light-driven electronic transitions leading to photolysis. Phonon-assisted charge carrier dynamics is investigated by combination of the density matrix formalism and on-the-fly nonadiabatic couplings. Light-driven fragmentation is modeled by a time-dependent excited-state molecular-dynamics (TDESMD) algorithm based on Rabi theory and principles similar to the trajectory surface hopping approximation. Numerical results indicate that, under the medium intensity of the laser field, light-driven electronic transitions are more probable than phonon-assisted ones. The formation of multiple products is observed in TDESMD trajectories. Simulated mass spectra are extracted from TDESMD simulations and compared to experimental photoionization time-of-flight (PI-TOF) mass spectra. It is found that several features in the experimental mass spectra are reproduced by the simulations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom