z-logo
open-access-imgOpen Access
Multiscale Model for Quantitative Prediction of Insulin Aggregation Nucleation Kinetics
Author(s) -
Rit Pratik Mishra,
Gaurav Goel
Publication year - 2021
Publication title -
journal of chemical theory and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.001
H-Index - 185
eISSN - 1549-9626
pISSN - 1549-9618
DOI - 10.1021/acs.jctc.1c00499
Subject(s) - nucleation , arrhenius equation , kinetics , chemistry , kinetic energy , protein aggregation , protein folding , thermodynamics , population , chemical physics , activation energy , biochemistry , physics , demography , organic chemistry , quantum mechanics , sociology
We combined kinetic, thermodynamic, and structural information from single-molecule (protein folding) and two-molecule (association) explicit-solvent simulations for determination of kinetic parameters in protein aggregation nucleation with insulin as the model protein. A structural bioinformatics approach was developed to account for heterogeneity of aggregation-prone species, with the transition complex theory found applicable in modeling association kinetics involving non-native species. Specifically, the kinetic pathway for formation of aggregation-prone oligomeric species was found to contain a structurally specific dominant binding mode, making the kinetic process similar to native protein association. The kinetic parameters thus obtained were used in a population balance model, and accurate predictions for aggregation nucleation time varying over 2 orders of magnitude with changes in either insulin concentration or an aggregation-inhibitor ligand concentration were obtained, while an empirical parameter set was not found to be transferable for prediction of ligand effects. Further, this physically determined kinetic parameter set provided several mechanistic insights, such as identification of the rate-limiting step in aggregation nucleation and a quantitative explanation for the switch from Arrhenius to non-Arrhenius aggregation kinetics around the melting temperature of insulin.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom