Open Access
Computing Ligands Bound to Proteins Using MELD-Accelerated MD
Author(s) -
Cong Liu,
Emiliano Brini,
Alberto Pérez,
Ken A. Dill
Publication year - 2020
Publication title -
journal of chemical theory and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.001
H-Index - 185
eISSN - 1549-9626
pISSN - 1549-9618
DOI - 10.1021/acs.jctc.0c00543
Subject(s) - dock , virtual screening , computer science , molecular dynamics , ligand (biochemistry) , small molecule , chemistry , computational biology , computational chemistry , biology , biochemistry , receptor
Predicting the poses of small-molecule ligands in protein binding sites is often done by virtual screening algorithms such as DOCK. In principle, molecular dynamics (MD) using atomistic force fields could give better free-energy-based pose selection, but MD is computationally expensive. Here, we ask if modeling employing limited data (MELD)-accelerated MD (MELD × MD) can pick out the best DOCK poses taken as input. We study 30 different ligand-protein pairs. MELD × MD finds native poses, based on best free energies, in 23 out of the 30 cases, 20 of which were previously known DOCK failures. We conclude that MELD × MD can add value for predicting accurate poses of small molecules bound to proteins.