z-logo
open-access-imgOpen Access
Spin Splitting Energy of Transition Metals: A New, More Affordable Wave Function Benchmark Method and Its Use to Test Density Functional Theory
Author(s) -
Dayou Zhang,
Donald G. Truhlar
Publication year - 2020
Publication title -
journal of chemical theory and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.001
H-Index - 185
eISSN - 1549-9626
pISSN - 1549-9618
DOI - 10.1021/acs.jctc.0c00518
Subject(s) - benchmark (surveying) , density functional theory , monatomic ion , wave function , basis set , spin (aerodynamics) , yield (engineering) , function (biology) , spin states , statistical physics , physics , chemistry , computational chemistry , atomic physics , quantum mechanics , thermodynamics , evolutionary biology , geodesy , biology , geography
Accurately predicting the spin splitting energy of chemical species is important for understanding their reactivity and magnetic properties, but it is very challenging, especially for molecules containing transition metals. One impediment to progress is the scarcity of accurate benchmark data. Here we report a set of calculations designed to yield reliable benchmarks for simple transition-metal complexes that can be used to test density functional methods that are affordable for large systems of more practical interest. Various wave function methods are tested against experiment for Fe 2+ , Fe 3+ , and Co 3+ , including CASSCF, CASPT2, CASPT3, MRCISD, MRCISD+Q, ACPF, AQCC, CCSD(T), and CASPT2/CCSD(T) and also a new method called CASPT2.5, which is performed by taking the average of the CASPT2 and CASPT3 energies. We find that MRCISD+Q, ACPF, and AQCC require smaller active spaces for good accuracy than are required by CASPT2 and CASPT3, and this aspect may be important for calculations on larger molecules; here we find that CASPT2.5 extrapolated to a complete basis set is the most suitable method-in terms of computational cost and in terms of accuracy on monatomic systems-and therefore we chose this method for molecular benchmarks. Then Kohn-Sham density functional calculations with 60 exchange-correlation functionals are tested for FeF 2 , FeCl 2 , and CoF 2 . We find that MN15-L, M06-SX, and revM06 have very good agreement with CASPT2.5 benchmarks in terms of both the spin splitting energy and the optimized geometry for each spin state. In addition, we recommend def2-TZVP as the most suitable basis set to perform density functional calculations for molecular spin splitting energies; extra polarization functions in the basis set do not help to increase the accuracy of the spin splitting energy in KS calculations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom