z-logo
open-access-imgOpen Access
Machine Learning-Enabled Pipeline for Large-Scale Virtual Drug Screening
Author(s) -
Aayush Gupta,
HuanXiang Zhou
Publication year - 2021
Publication title -
journal of chemical information and modeling
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 160
eISSN - 1549-960X
pISSN - 1549-9596
DOI - 10.1021/acs.jcim.1c00710
Subject(s) - virtual screening , false positive paradox , computer science , true positive rate , drug discovery , pipeline (software) , artificial intelligence , machine learning , drug , computational biology , bioinformatics , medicine , pharmacology , biology , programming language
Virtual screening is receiving renewed attention in drug discovery, but progress is hampered by challenges on two fronts: handling the ever-increasing sizes of libraries of drug-like compounds and separating true positives from false positives. Here, we developed a machine learning-enabled pipeline for large-scale virtual screening that promises breakthroughs on both fronts. By clustering compounds according to molecular properties and limited docking against a drug target, the full library was trimmed by 10-fold; the remaining compounds were then screened individually by docking; and finally, a dense neural network was trained to classify the hits into true and false positives. As illustration, we screened for inhibitors against RPN11, the deubiquitinase subunit of the proteasome, and a drug target for breast cancer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom