z-logo
open-access-imgOpen Access
All-Atom Simulations Uncover the Molecular Terms of the NKCC1 Transport Mechanism
Author(s) -
Pavel Janoš,
Alessandra Magistrato
Publication year - 2021
Publication title -
journal of chemical information and modeling
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 160
eISSN - 1549-960X
pISSN - 1549-9596
DOI - 10.1021/acs.jcim.1c00551
Subject(s) - cotransporter , chemistry , chromosomal translocation , chloride , biophysics , mechanism (biology) , molecular dynamics , ion transporter , biochemistry , membrane , biology , sodium , gene , computational chemistry , organic chemistry , philosophy , epistemology
The secondary-active Na-K-Cl cotransporter 1 (NKCC1), member of the cation-chloride cotransporter (CCC) family, ensures the electroneutral movement of Cl - , Na + , and K + ions across cellular membranes. NKCC1 regulates Cl - homeostasis and cell volume, handling a pivotal role in transepithelial water transport and neuronal excitability. Aberrant NKCC1 transport is hence implicated in a variety of human diseases (hypertension, renal disorders, neuropathies, and cancer). Building on the newly resolved NKCC1 cryo-EM structure, all-atom enhanced sampling simulations unprecedentedly unlock the mechanism of NKCC1-mediated ion transport, assessing the order and the molecular basis of its interdependent ion translocation. Our outcomes strikingly advance the understanding of the physiological mechanism of CCCs and disclose a key role of CCC-conserved asparagine residues, whose side-chain promiscuity ensures the transport of both negatively and positively charged ions along the same translocation route. This study sets a conceptual basis to devise NKCC-selective inhibitors to treat diseases linked to Cl - dishomeostasis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom