z-logo
open-access-imgOpen Access
Relationship among the Crystal Structure, Texture, and Macroscopic Properties of Tetragonal (Pb,La)(Zr,Ti)O3 Ferroelectrics Investigated by In Situ High-Energy Synchrotron Diffraction
Author(s) -
Longlong Fan,
Linxing Zhang,
Yang Ren,
Hui Liu,
Xianran Xing,
Jun Chen
Publication year - 2020
Publication title -
inorganic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 233
eISSN - 1520-510X
pISSN - 0020-1669
DOI - 10.1021/acs.inorgchem.0c02002
Subject(s) - tetragonal crystal system , chemistry , synchrotron , texture (cosmology) , diffraction , crystallography , in situ , crystal structure , x ray crystallography , optics , physics , image (mathematics) , organic chemistry , artificial intelligence , computer science
In situ diffraction investigations have played an important role in experimentally revealing the mechanism of piezoelectric and ferroelectric properties. In this study, a pure tetragonal ferroelectric ceramic of La-doped PbZr 0.5 Ti 0.5 O 3 (LaPZT50) was investigated to eliminate the complex influence of phase coexistence. The electric field evolutions of the crystal structure, domain switching, and lattice deformation of the tetragonal phase have been revealed by in situ high-energy synchrotron X-ray diffraction. We found that the crystal structure of LaPZT50 is quite stable, showing a negligible change in the Pb-O bond length, unit cell volume, and spontaneous polarization upon application of an in situ external electric field. Importantly, the maximum macroscopic polarization of tetragonal LaPZT50 is defined by the 111-oriented grains. As determined by the intensity difference, the switching of non-180° domains plays a more significant role in contributing to the macroscopic strain than lattice deformation. These results further imply that the phase coexistence around the morphotropic phase boundary facilitates domain wall motion in the tetragonal phase and improves the ferroelectric and piezoelectric properties.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom