
Thiol-Functionalized Membranes for Mercury Capture from Water
Author(s) -
Sebastián Hernández,
Md. Saiful Islam,
Samuel J. Thompson,
Madison Kearschner,
Evan S. Hatakeyama,
Nga Malekzadeh,
Thomas P. Hoelen,
Dibakar Bhattacharyya
Publication year - 2019
Publication title -
industrial and engineering chemistry research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.878
H-Index - 221
eISSN - 1520-5045
pISSN - 0888-5885
DOI - 10.1021/acs.iecr.9b03761
Subject(s) - membrane , sorption , chemistry , mercury (programming language) , ion exchange , polyvinylidene fluoride , nuclear chemistry , inorganic chemistry , organic chemistry , adsorption , ion , biochemistry , computer science , programming language
Pore functionalized membranes with appropriate ion exchange/chelate groups allow toxic metal sorption under convective flow conditions. This study explores the sorption capacity of ionic mercury in a polyvinylidene fluoride-poly(acrylic acid) (PVDFs-PAA) functionalized membrane immobilized with cysteamine (MEA). Two methods of MEA immobilization to the PVDF-PAA membrane have been assessed: (i) ion exchange (IE) and (ii) carbodiimide cross-linker chemistry using 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide hydrochloride (EDC) and N -hydroxysuccinimide (NHS), known as EDC/NHS coupling. The ion exchange method demonstrates that cysteamine (MEA) can be immobilized effectively on PVDF-PAA membranes without covalent attachment. The effectiveness of the MEA immobilized membranes to remove ionic mercury from the water was evaluated by passing a dissolved mercury(II) nitrate solution through the membranes. The sorption capacity of mercury for MEA immobilized membrane prepared by the IE method is 1015 mg/g PAA. On the other hand, the sorption capacity of mercury for MEA immobilized membrane prepared by EDC/NHS chemistry is 2446 mg/g PAA, indicating that membrane functionalization by EDC/NHS coupling enhanced mercury sorption 2.4 times compared to the IE method. The efficiencies of Hg removal are 94.1 ± 1.1 and 99.1 ± 0.1% for the MEA immobilized membranes prepared by IE and EDC/NHS coupling methods, respectively. These results show potential applications of MEA immobilized PVDF-PAA membranes for industrial wastewater treatment specifically from energy and mining industries to remove mercury and other toxic metals.