z-logo
open-access-imgOpen Access
Studies of Emission Processes of Polymer Additives into Water Using Quartz Crystal Microbalance—A Case Study on Organophosphate Esters
Author(s) -
Linhong Xiao,
Ziye Zheng,
Knut Irgum,
Patrik L. Andersson
Publication year - 2020
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.9b07607
Subject(s) - quartz crystal microbalance , polymer , kinetics , chemical engineering , phase (matter) , diffusion , organophosphate , chemistry , materials science , analytical chemistry (journal) , organic chemistry , thermodynamics , adsorption , agronomy , physics , quantum mechanics , pesticide , biology , engineering
Plastic materials contain various additives, which can be released during the entire lifespan of plastics and pose a threat to the environment and human health. Despite our knowledge on leakage of additives from products, accurate and rapid approaches to study emission kinetics are largely lacking, in particular, methodologies that can provide in-depth understanding of polymer/additive interactions. Here, we report on a novel approach using quartz crystal microbalance (QCM) to measure emissions of additives to water from polymer films spin-coated on quartz crystals. The methodology, being accurate and reproducible with a standard error of ±2.4%, was applied to a range of organophosphate esters (OPEs) and polymers with varying physicochemical properties. The release of most OPEs reached an apparent steady-state within 10 h. The release curves for the studied OPEs could be fitted using a Weibull model, which shows that the release is a two-phase process with an initial fast phase driven by partitioning of OPEs readily available at or close to the polymer film surface, and a slower phase dominated by diffusion in the polymer. The kinetics of the first emission phase was mainly correlated with the hydrophobicity of the OPEs, whereas the diffusion phase was weakly correlated with molecular size. The developed QCM-based method for assessing and studying release of organic chemicals from a polymeric matrix is well suited for rapid screening of additives in efforts to identify more sustainable replacement polymer additives with lower emission potential.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom