z-logo
open-access-imgOpen Access
Microbial U Isotope Fractionation Depends on the U(VI) Reduction Rate
Author(s) -
Anirban Basu,
Christoph Wanner,
Thomas M. Johnson,
Craig C. Lundstrom,
Robert A. Sanford,
Eric Sonnenthal,
Maxim I. Boyanov,
Kenneth Kemner
Publication year - 2020
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.9b05935
Subject(s) - fractionation , chemistry , isotope fractionation , isotope , kinetic isotope effect , kinetics , reaction rate constant , analytical chemistry (journal) , environmental chemistry , chromatography , physics , quantum mechanics , deuterium
U isotope fractionation may serve as an accurate proxy for U(VI) reduction in both modern and ancient environments, if the systematic controls on the magnitude of fractionation (ε) are known. We model the effect of U(VI) reduction kinetics on U isotopic fractionation during U(VI) reduction by a novel Shewanella isolate, Shewanella sp. (NR), in batch incubations. The measured ε values range from 0.96 ± 0.16 to 0.36 ± 0.07‰ and are strongly dependent on the U(VI) reduction rate. The ε decreases with increasing reduction rate constants normalized by cell density and initial U(VI). Reactive transport simulations suggest that the rate dependence of ε is due to a two-step process, where diffusive transport of U(VI) from the bulk solution across a boundary layer is followed by enzymatic reduction. Our results imply that the spatial decoupling of bulk U(VI) solution and enzymatic reduction should be taken into account for interpreting U isotope data from the environment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom