Coupled Kinetics of Ferrihydrite Transformation and As(V) Sequestration under the Effect of Humic Acids: A Mechanistic and Quantitative Study
Author(s) -
Shiwen Hu,
Yang Lu,
Lanfang Peng,
Pei Wang,
Mengqiang Zhu,
Alice Dohnálková,
Hong Chen,
Zhang Lin,
Zhi Dang,
Zhenqing Shi
Publication year - 2018
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.8b03492
Subject(s) - ferrihydrite , goethite , hematite , chemistry , kinetics , mineral , genetic algorithm , sorption , environmental chemistry , mineralogy , inorganic chemistry , physics , organic chemistry , adsorption , quantum mechanics , evolutionary biology , biology
In natural environments, kinetics of As(V) sequestration/release is usually coupled with dynamic Fe mineral transformation, which is further influenced by the presence of natural organic matter (NOM). Previous work mainly focused on the interactions between As(V) and Fe minerals. However, there is a lack of both mechanistic and quantitative understanding on the coupled kinetic processes in the As(V)-Fe mineral-NOM system. In this study, we investigated the effect of humic acids (HA) on the coupled kinetics of ferrihydrite transformation into hematite/goethite and sequestration of As(V) on Fe minerals. Time-resolved As(V) and HA interactions with Fe minerals during the kinetic processes were studied using aberration-corrected scanning transmission electron microscopy, chemical extractions, stirred-flow kinetic experiments, and X-ray absorption spectroscopy. Based on the experimental results, we developed a mechanistic kinetics model for As(V) fate during Fe mineral transformation. Our results demonstrated that the rates of As(V) speciation changes within Fe minerals were coupled with ferrihydrite transformation rates, and the overall reactions were slowed down by the presence of HA that sorbed on Fe minerals. Our kinetics model is able to account for variations of Fe mineral compositions, solution chemistry, and As(V) speciation, which has significant environmental implications for predicting As(V) behavior in the environment.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom