z-logo
open-access-imgOpen Access
Adsorption of Selenite onto Bacillus subtilis: The Overlooked Role of Cell Envelope Sulfhydryl Sites in the Microbial Conversion of Se(IV)
Author(s) -
Qiang Yu,
Maxim I. Boyanov,
Jinling Liu,
Kenneth Kemner,
Jeremy B. Fein
Publication year - 2018
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.8b02280
Subject(s) - bacillus subtilis , selenium , adsorption , cell envelope , chemistry , environmental chemistry , microbiology and biotechnology , biochemistry , bacteria , escherichia coli , biology , organic chemistry , genetics , gene
Microbial activities play a central role in the global cycling of selenium. Microorganisms can reduce, methylate, and assimilate Se, controlling the transport and fate of Se in the environment. However, the mechanisms controlling these microbial activities are still poorly understood. In particular, it is unknown how the negatively charged Se(IV) and Se(VI) oxyanions that dominate the aqueous Se speciation in oxidizing environments bind to negatively charged microbial cell surfaces in order to become bioavailable. Here, we show that the adsorption of selenite onto Bacillus subtilis bacterial cells is controlled by cell envelope sulfhydryl sites. Once adsorbed onto the bacteria, selenite is reduced and forms reduced organo-Se compounds (e.g., R 1 S-Se-SR 2 ). Because sulfhydryl sites are present within cell envelopes of a wide range of bacterial species, sulfhydryl-controlled adsorption of selenite likely represents a general mechanism adopted by bacteria to make selenite bioavailable. Therefore, sulfhydryl binding of selenite likely occurs in a wide range of oxidized Se-bearing environments, and because it is followed by microbial conversion of selenite to other Se species, the process represents a crucial step in the global cycling of Se.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom