z-logo
open-access-imgOpen Access
Plutonium(IV) and (V) Sorption to Goethite at Sub-Femtomolar to Micromolar Concentrations: Redox Transformations and Surface Precipitation
Author(s) -
Pihong Zhao,
James D. Begg,
Mavrik Zavarin,
Scott J. Tumey,
Ross W. Williams,
Z. R. Dai,
R Kips,
Annie B. Kersting
Publication year - 2016
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.6b00605
Subject(s) - sorption , goethite , chemistry , adsorption , precipitation , redox , plutonium , oxidation state , high resolution transmission electron microscopy , analytical chemistry (journal) , nuclear chemistry , inorganic chemistry , metal , chromatography , materials science , organic chemistry , nanotechnology , physics , transmission electron microscopy , meteorology
Pu(IV) and Pu(V) sorption to goethite was investigated over a concentration range of 10(-15)-10(-5) M at pH 8. Experiments with initial Pu concentrations of 10(-15) - 10(-8) M produced linear Pu sorption isotherms, demonstrating that Pu sorption to goethite is not concentration-dependent across this concentration range. Equivalent Pu(IV) and Pu(V) sorption Kd values obtained at 1 and 2-week sampling time points indicated that Pu(V) is rapidly reduced to Pu(IV) on the goethite surface. Further, it suggested that Pu surface redox transformations are sufficiently rapid to achieve an equilibrium state within 1 week, regardless of the initial Pu oxidation state. At initial concentrations >10(-8) M, both Pu oxidation states exhibited deviations from linear sorption behavior and less Pu was adsorbed than at lower concentrations. NanoSIMS and HRTEM analysis of samples with initial Pu concentrations of 10(-8) - 10(-6) M indicated that Pu surface and/or bulk precipitation was likely responsible for this deviation. In 10(-6) M Pu(IV) and Pu(V) samples, HRTEM analysis showed the formation of a body centered cubic (bcc) Pu4O7 structure on the goethite surface, confirming that reduction of Pu(V) had occurred on the mineral surface and that epitaxial distortion previously observed for Pu(IV) sorption occurs with Pu(V) as well.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom