Macroscopic Evidence for the Hibernating Behavior of Materials Stock
Author(s) -
Ichiro Daigo,
Kohei Iwata,
Ikumi Ohkata,
Yoshikazu Goto
Publication year - 2015
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.5b01164
Subject(s) - scrap , stock (firearms) , hibernation (computing) , hibernating myocardium , environmental science , materials science , computer science , metallurgy , medicine , state (computer science) , revascularization , algorithm , psychiatry , myocardial infarction
Hibernating stock is defined as material stock that is no longer used, but is not yet recovered. Although hibernating stock plays a role in materials recoverability, its contribution to the overall material cycle is not clearly understood. Therefore, an analysis of the time-series potential generation of steel scrap in Japan was performed and compared against the actual recovery, proving that the steel scrap recovered each year exceeds the annual generation potential and providing the first macroscopic evidence of hibernating stock recovery. These results indicate that hibernation behavior should be considered when evaluating materials recoverability. The particular characteristics of hibernating stock were also identified. These materials tend to be located far from scrap yards and/or have low bulk density, while also minimally obstructing new activity. In fact, hibernating materials are typically only recovered when they obstruct new activity. Hence, in order to increase steel recoverability, the recovery cost must be reduced. The end-of-life recycling rates (EoL-RRs) were also evaluated, and were found to exhibit a significant change over time. Consequently, the annual EoL-RR cannot be considered as a representative value, and a value for the EoL-RR(s) of relevant year(s) that has been evaluated over the entire period should be used instead.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom