Independent Data Validation of an in Vitro Method for the Prediction of the Relative Bioavailability of Arsenic in Contaminated Soils
Author(s) -
Karen D. Bradham,
Clay Nelson,
Albert L. Juhasz,
Euan Smith,
Kirk G. Scheckel,
Daniel R. Obenour,
Bradley W. Miller,
David J. Thomas
Publication year - 2015
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.5b00905
Subject(s) - arsenic , bioavailability , environmental chemistry , soil water , contamination , environmental science , soil contamination , chemistry , soil science , biology , ecology , pharmacology , organic chemistry
In vitro bioaccessibility (IVBA) assays estimate arsenic (As) relative bioavailability (RBA) in contaminated soils to improve accuracy in human exposure assessments. Previous studies correlating soil As IVBA with RBA have been limited by the use of few soil types and sources of As, and the predictive value of As IVBA has not been validated using an independent set of As-contaminated soils. In this study, a robust linear model was developed to predict As RBA in mice using IVBA, and the predictive capability of the model was independently validated using a unique set of As-contaminated soils. Forty As-contaminated soils varying in soil type and contaminant source were included in this study, with 31 soils used for initial model development and nine soils used for independent model validation. The initial model reliably predicted As RBA values in the independent data set, with a mean As RBA prediction error of 5.4%. Following validation, 40 soils were used for final model development, resulting in a linear model with the equation RBA = 0.65 × IVBA + 7.8 and an R(2) of 0.81. The in vivo-in vitro correlation and independent data validation presented provide critical verification necessary for regulatory acceptance in human health risk assessment.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom